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The thermostat-consistent fully coupled molecular dynamics – generalised fluctuating 

hydrodynamics method is developed for non-equilibrium water flow simulations. The model 

allows for strong coupling between the atomistic and the continuum hydrodynamics 

representations of water and shows an improved stability in comparison with the previous 

formulations of similar multiscale methods. Numerical results are demonstrated for a periodic 

nano-scale Poiseuille flow problem with SPC/E water. The computed time-averaged velocity 

profiles are compared with the analytical solution, and the thermal velocity fluctuations are well 

reproduced in comparison with the Equilibrium Molecular Dynamics (EMD) simulation. 

Several options to account for the long-range electrostatics interactions available in 

GROMACS are incorporated in the model and compared. It is demonstrated that the suggested 

non-equilibrium multiscale model is a factor of 4 to 18 faster in comparison with the standard 

all-atom equilibrium molecular dynamics model for the same computational domain size. 

 

1. Introduction 

One of the popular categories of multiscale methods for atomistic-scale resolving 

simulations of non-equilibrium liquid flows is based on the idea of dividing the computational 

domain into an overlapping region of the continuum Navier-Stokes equations and the molecular 

dynamics region following the pioneering work of O’Connell and Thompson [1]. In further 

models, more accurate continuum models of dense liquids were used such as the Landau-

Lifshitz Fluctuating Hydrodynamics (LL-FH) equations [2], which also preserve thermal 

fluctuations thereby enabling more consistent coupling with molecular dynamics [3-5]. A finite 

overlap (buffer) region between the models of different resolutions is beneficial for a smooth 
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transition between the continuum and atomistic parts of the model to avoid sharp oscillations 

[6]. In multi-particle methods [7-8], such buffer region also contains a multi-resolution region 

where discrete particles transition from the fully atomistic to a coarse-grained representation. 

Consequently, the coarse-grained particles are coupled with the continuum flow models which 

lead to a micro-meso-macro scale formulation[8-9]. For multi-resolution fluid dynamics 

modelling, the coupling between the models of different resolution should respect conservation 

of both the mass and the linear momentum. To automatically satisfy these conservation laws, 

the two-phase analogy multiscale method was suggested in [10-11], which considered the 

continuum and atomistic representations of a liquid as phases of a nominally two-phase flow. 

The phases are allowed to transition one to another in accordance with a concentration field, a 

user-defined function that determines which parts of the computational domain need to be 

modelled at molecular dynamics resolution, and which do not. The continuum phase is 

governed by the LL-FH-type equations integrated over control volumes, which are smoothly 

replaced by the averaged fields obtained from the molecular dynamics equations in the region 

of atomistic resolution of the multiscale model. To avoid separation of the two phases in the 

buffer region, forcing functions are introduced in the molecular dynamics equations, which 

correspond to the equivalent source and sink terms in the control volume averaged mass and 

momentum equations. The latter equations are more complex in comparison with the LL-FH 

model. Hence, in a number of cases, where the effect of the molecular phase on the continuum 

part of the model could be included in the calibration of the constitutive relations of the 

continuum model, such as the equation of state, a one-way coupled model case was used. Such 

one-way coupled model accounted for the continuum flow effect on microscopic particles while 

ignoring the feedback [12-14]. Despite the relative simplicity, the one-way-coupled approach 

performs well for a range of problems including the diffusion of peptides in cross flow [15-16], 

oscillations of a PCV2 virus capsid in water [17], and the nano-confined water effects in a High-

Speed Atomic Force Microscope experiment [18]. However, to achieve the full potential of the 
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hybrid multiscale method in terms of accuracy and computational performance, the two-way 

coupling of the phases is needed. To do so efficiently, the governing equations of the two-phase 

flow analogy model [19] were rearranged to the single set of Generalised Landau-Lifshitz 

Fluctuating Hydrodynamics equations (GLL-FH), implemented in GROMACS [20], and applied 

for liquid argon simulations [21]. In comparison with the standard LL-FH model, the GLL-FH 

equations are mathematically equivalent to the control-volume averaged molecular dynamics 

equations and reduce to the standard LL-FH equations for the pure continuum hydrodynamics 

phase. To extend the original model to more complex liquids such as water, the two-way 

coupled GLL-FH model was further extended to the local thermostat equations in Ref.[22], 

where the thermostat-consistent fully coupled molecular dynamics – generalised fluctuating 

hydrodynamics model of SPC/E water was developed. Because of the simple Langevin 

thermostat used, which does not preserve the linear momentum of macroscopic flow, the 

implementation was limited to water fluctuations in equilibrium conditions. Hence, the present 

work is devoted to extending the model to non-uniform flow by using a new linearisation 

approach, which also allows one to couple the suggested method with an external macroscopic 

flow model (such as Fluid-Structure-Interaction in the future). To achieve this goal, a more 

stable approximation of the source terms of the GLL-FH equations is developed and several 

formulations for simulating long-range electrostatic interactions available in GROMACS are 

implemented. 

2. Method 

2.1 Two-phase flow analogy equations and the Generalised Landau-Lifshitz Fluctuating 

Hydrodynamics model 

Following Ref.[10], the equations of conservation of mass (1),(2) and momentum (3),(4) 

of the two-phase flow representative of SPC/E water are considered, where a user-defined 

concentration function s is introduced. The latter function enables the smooth transition of 

model resolution from the pure molecular dynamics zone (s = 0) to the pure continuum zone (s 
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= 1). In the intermediate buffer region (0 < s < 1), the two phases co-exist, which gives rise to 

the exchange (source/sink) terms on the right-hand-side of the phase equations:  
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Here i=1, 2, 3 denotes x, y and z components, variables with and without sub-index p correspond 

to molecular dynamics phase and the continuum cell-volume/flux averaged values, 

respectively;   corresponds to one of the six faces of the hexahedral control volume of the 

computational grid, V ; m  and  are the local mass and density of the continuum phase per 

given control volume; 
p

m  and 
p p

m V  are the particle mass and its effective density per 

control volume, respectively; pu  and u  correspond to particle velocity and velocity of the two 

phase ‘mixture’, which is given by  
1

1
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hexahedral finite-volume representation of control-volume-averaged gradients, f , which are 

computed in accordance with the Gauss-Ostrogradski (Divergence) theorem, 
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noted. The mixture density is defined as  
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    . N  is the number of particles per 

cell volume, and N
  denotes the number of particles crossing the cell face in the direction of 

the area normal d


n , t  represents the change of each quantity over one time step. MD

ipF  refers 

to the MD particle force exerted on each particle. The continuum force, ( )
i j ij ij

F    
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includes both the deterministic and stochastic continuum Reynolds stress forces in accordance 

with the Landau-Lifshitz Fluctuating Hydrodynamic (LL-FH) model[2], where the amplitude of 

thermal fluctuations is inversely proportional to the square root of the continuum 

hydrodynamics integration time step FHt  and  control volume size, V  and also linearly 

proportional to the square root of the thermodynamic temperature, T , which is equal to the 

target temperature of the MD ensemble, 
0

T . For isothermal processes of interest in this work, 

an isothermal Equation of State (EoS), 
0

( , )p p T  is assumed, which relates thermodynamic 

pressure and density of the continuum phase, and which is calibrated from a separate all-atom 

equilibrium MD simulation of SPC/E water. In the current work, the calibrated EoS can be 

expressed as ( ) cp a b    , and the simulation parameters including MD details are 

summarised in Table 1. 

The source and sink terms, 1J  and 2J  , which determine the phase interaction are defined 

so that the residuals corresponding to the differences of the cell-averaged particle density and 

momenta from the same of the two-phase mixture, 
1

N

p

p

  


    and 
1

N

i i p ip
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   , are 

forced to decay to zero (or, at least, stay bounded) to avoid the unwanted phase separation, in 

accordance with the additional relations: 
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Accordingly, to satisfy the conservation of particle mass and momentum equations, 
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the molecular dynamics equations are modified to 
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where i, j = 1,2,3 are Cartesian coordinate components, p is the particle sub-index which refers 

to the point/ field value defined/interpolated to the particle location, and , 0    are adjustable 

coupling constants, which are obtained from the model calibration by comparison with the all-

atom MD simulations in the equilibrium case. 

For numerical solution of equations (1) – (4), following Ref.[21], new dependent variables 

*     and 
i i i

q u q    are introduced to re-arrange the equations to the so-called 

Generalised Landau-Lifshitz Fluctuating Hydrodynamics (GLL-FH) form, which is a single 

phase formulation of the original two-phase-like equations (1)-(4), 
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where the right-hand-side terms account for the control-volume-averaged mass and momentum 

terms sources corresponding to the feedback from the MD particles to the continuum 

hydrodynamics phase, 
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In the actual MD implementation, an additional Langevin dissipative term is included in 

the MD velocity equation   

*ip
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where   is the rescaling parameter of the Berendsen thermostat [23], 1 1
refMD

Tt

T
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  is its characteristic relaxation time, refT  is the target MD temperature, and T  is the 

instantaneous temperature of MD particles for the relevant ensemble averaging. Furthermore, 

to include the continuum hydrodynamics effect in the multi-resolution domain, the s-dependent 

local thermostat was suggested[22] to partly account for the particle inertia effect, 
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By integrating the MD particle equations, the modified Leapfrog scheme is obtained [22] 
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This will lead to the corresponding modification of the momentum source term of the GLL-FH 

equations in comparison with (14), 
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2.2 Application to the Poiseuille flow: the linearisation approach and the computational 

method 

To enforce a non-uniform background incompressible flow,   0 , 0u x , a linearization 

algorithm is introduced as follows.  

The GLL-FH solution is considered as a linear superposition of the steady solution and the 

unsteady fluctuation, 
0( , ) ( ( , ), ( ) ( , ))t t    

0u x u x u x , where the double prime denotes 

the thermal fluctuation. Such linearization reduces the problem to (i) the solution of the 

governing GLL-FH equations (11) and (12) for density and thermal velocity fluctuation, 

 , ), ( t u x  under the simplified periodic boundary conditions and (ii) the determination of the 

background flow solution   0 , 0u x . Notably, the latter can be obtained from a separate 

continuum flow calculation or specified analytically, as in the case of the Poiseuille flow case 

considered in the numerical example section. The MD equations (18)-(20) are solved with the 

full reconstructed solution ( , ) u . Hence, for consistency, the MD velocities appearing in the 

source term iQ  (14a) are redefined to subtract the mean values, 
1

1 N

ip ip ip

p

u u u
N 

   .  

It can be noted that the GLL-FH equations are solved for the velocity fluctuation variable 

consistently with MD equations. In accordance with this formulation, the non-uniform 
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background flow is included separately and, thereby, is not affected by the Langevin dissipation. 

Due to the linearisation approach, the non-uniform macroscopic flow is preserved and the total 

linear momentum conservation property is not violated. A more general approach to enforce 

the total momentum conservation would be to use Dissipative Particle Dynamics (DPD) 

thermostat, which is based on the relative velocity between a pair of interacting particles. Once 

implemented in future work, such approach would not require using the suggested linearisation 

method to conserve the bulk flow momentum.  

Following Ref.[22], the GLL-FH equations (5),(6), (11)-(13), (18)-(20) are solved by a 

predictor-corrector scheme, where the Eulerian part of the model (5),(6), (11)-(13) is solved by 

a central finite-volume method on a uniform computational grid of control volumes V . The 

integration time step of the control-volume-averaged equations, FHt  is 10 times larger in 

comparison with the MD time step, MDt . In the two-way coupled solution, the hydrodynamic 

fields are driven by the collective dynamics of MD particles while coordinates and velocities 

of the MD particles are concurrently updated in accordance with (18)-(20). 

Most details of the implemented numerical algorithm are identical to the algorithm 

published in Ref.[22]. Two modifications to increase the stability of the numerical scheme for 

solving the GLL-FH equations are summarised below. 

First, the modified version of equations (5) and (6) is solved by re-arranging the source 

term to include the evolutionary variable in the dissipation terms thereby enabling an improved 

stability, 
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Secondly, for more accurate approximation of the ensemble-averaged MD forces 

 
1

1
N

MD

p ip

p

s F


    of the momentum source term iQ  in (14a), an improved averaging procedure 

is implemented. The MD forces are driven by steep MD pair potentials. Without a sufficient 

ensemble averaging, the force term has a highly oscillatory behaviour, which may lead to 

numerical instability when solving the GLL-FH equations. Hence, to compensate for a limited 

time averaging, the MD force term is spatially filtered by averaging over a super-control volume 

of 33 cells, where the central cell corresponds to the current control volume of interest (Figure 

1). 

 

Figure 1. Schematic of a super-control volume comprising 33 cells for calculation of the cell-

averaged MD force term in the current central cell. 

Following Ref.[22], the computational domain includes a large hydrodynamic box domain, 

1 2 3, ,L x x x L    that overlaps with a small MD particle domain in the center. Continuum 

hydrodynamic equations (5), (6), (11)-(13) are solved in the large box domain, and the modified 

MD particle equations (18)-(20) are solved in the particle domain with NVT ensemble. Due to 

the improved stability, the current implementation of the GLL-FH model permits the testing of 

different long-range electrostatics methods in the MD part of the multiscale model. Specifically, 

the implementations of the model based on the Cut-off and Reaction-Field[24] methods in 
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GROMACS are compared. In addition, we have also implemented the same multiscale model 

with the Particle-Mesh Ewald (PME) method, which yields similar results to the Reaction-Field, 

hence, is not discussed separately. 

The background flow corresponding to the planar Poiseuille flow is imposed  

   
2

2
01 01 max 0,0,0 , 1

x
u u U U

L

  
        

0u x ,  (21) 

where 

2

2
0 max 2

1
1 d

2

L

L

x
U U x

L L

  
      

  corresponds to the shift applied to subtract the center of 

mass velocity in order to simplify the simulation in GROMACS. For the current test, 
max 0.05U 

nm·ps-1 and L ≡ box domain length with 9×9×9 elementary control volumes are considered. 

To investigate the effect of the size of the hydrodynamic computational domains, two 

computational domains, which correspond to 9×9×9 and 17×17×17 elementary control volumes 

are considered. The MD particle domain in the centre of the hydrodynamic box domain 

corresponds to 5×5×5 control volumes of the full grid. On average, each elementary control 

volume in the particle domain contains 243 water molecules at the normal atmospheric pressure 

(1 bar) and room temperature conditions (298.15 K). Periodic boundary conditions are used for 

both the hydrodynamic box and the interior MD particle domains. Together with considering 

of the Cut-off and Reaction-Field methods for the long-range MD interactions this amounts to 

4 cases (2 domains × 2 models) to be tested. 

To complete the hybrid model description, the s-function, which delineates the regions of 

the atomistic resolution from the hydrodynamics region is specified following Ref.[21] and 

Ref.[22] so that it is spherically distributed with the radial distance from the centre, 

2 2 2

1 2 3r x x x    inside the particle domain 



  

12 

 

max

max

0,

( ) ,

,

MD

MD
MD FH

FH MD

FH

r R

r R
s r S R r R

R R

S r R

 



  


 

,  (22) 

and is set to 1 in the hydrodynamics box domain outside of the MD region.  

Parameters of the suggested model such as Smax, RMD and RFH as well as the coupling parameters, 

𝛼   and 𝛽  are acquired from a suitable calibration of the model for the equilibrium water 

simulation case. Summary of the model parameters is provided in Table 1. 

 
Figure 2. Computational setup for the simulation of water fluctuations: the overlapping 

continuum and particle box domains. The insert shows an outline of the spherical pure MD 

region (s = 0) inside the MD particle box. 

Table 1. Simulation parameters of the GLL-FH model of the SPC/E water flow 

Items value 

Number of atoms (molecules) 91125 (30375) 

Molecular mass (g·mol−1) 18.015 

Temperature (K) 298.15 

MD box volume (nm3) 9.686×9.686×9.686 

MD time step (ps) 0.001 

Continuum solver time step (ps) 0.01 

Average density (amu·nm−3) 602.18 

Shear viscosity (amu·nm−1·ps−1) 409.496 

Bulk viscosity (amu·nm−1·ps−1) 933.41 

Maximum concentration of the hydrodynamic 

phase in the particle domain 
maxS  

0.5 

Number of control volumes in the MD box domain 5×5×5 

Number of control volumes in the continuum box 

domain 
9×9×9&17×17×17 

Dimensionless radius of the pure MD zone, 1/ 3

2
MD

R V
  0.5 
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Dimensionless radius of the pure MD/FH zone, 
1/32 FHR V   

1 

MD/FH coupling parameters, α (ps-1), β (ps-1) 500, 1000 

Thermostat relaxation time, (ps) 0.01 

Constraints algorithm SETTLE[25] 

Parameters of EoS ( )p a b c     a=0.010, b=-10.133, c=2428.920 

 

3 Results and discussion 

3.1 Flow profiles 

Figure 3 compares the time-averaged velocity profiles of FH solutions and MD solutions 

for all four cases, the Cut-off and Reaction-Field electrostatics methods with two domain sizes, 

9×9×9 and 17×17×17 cells. The three solutions compared against the analytical Poiseuille flow 

solution, 01u  correspond to the time-averaged velocity profile 1u  and the time- and cell-

volume-averaged profile of the MD particle velocities ,
1

1 N

ip

p

u
N 

  in the full particle zone 

including the buffer region and in the pure MD zone only. In all cases, the numerical solutions 

closely capture the analytical Poiseuille flow profile. It can be seen the MD velocity solutions 

of the large computational domain are less sensitive to the choice of the electrostatics interaction 

modelling. For the smaller domain, the Reaction-Field method leads to a less noisy and more 

accurate solution of the velocity profile. The larger sensitivity of the plain Cut-off method can 

be explained by the fact that it cannot accurately describe the long-range dipole-dipole 

interactions. 
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Figure 3. Time-averaged flow velocity profiles of the continuum field and MD particle 

solutions for different hydrodynamic box sizes and MD electrostatics methods: (a) Cut-off 

method in the 9×9×9 domain, (b) Cut-off method in the 17×17×17 domain, (c) Reaction-field 

method in the 9×9×9 domain, and (d) Reaction-field method in the 17×17×17 domain.  

3.2 Thermal fluctuations 

The computed standard deviations of density and velocity fluctuations of the MD phase 

and the hydrodynamics fields,  , u  of the four solutions are summarised in Tables 2a and 

b. The MD fluctuations are ensemble-averaged over each control volume V  of the MD particle 

part of the computational domains and compared with the reference analytical solutions. The 

latter solutions are based on the grand-canonical-ensemble fluctuating hydrodynamics theory, 

1 0
( )

T B

T
STD c k

V
 


  and 0

( )
B

T
STD u k

V
 , where 

1

Tc
 is the isothermal speed of sound and 𝑘𝐵 is 

Boltzmann constant. 

For all four cases, the standard deviations of the MD particle and continuum fluctuating 

hydrodynamics solutions are approximately within 15% for density fluctuations and within 10% 

for velocity fluctuations one from the other. This suggests that the artificial phase separation 

did not occur, and the phase coupling of two-phase flow analogy method has been consistent.  

On the other hand, it can be noted that the thermal fluctuations of density are 30-50% 

lower than the analytical solution based on the grand canonical ensemble theory. This is 

explained by the effect of the local thermostat implemented in the buffer region. Indeed, it can 

be recalled that the s-dependent thermostat (17) is set to decrease the reference temperature 

with increase of the hydrodynamic force contribution (s increasing). Hence, when averaged 
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over the entire MD particle domain, the thermal fluctuations of the particle phase of the GLL-

FH are expected to be smaller than the reference analytical solution that also includes the 

hydrodynamics contribution. In this respect, the solution of the Reaction-Field method appears 

to be more consistent due to the fact it demonstrates moderately lower fluctuations than the 

predictions based on the grand canonical ensemble theory, while the Cut-off method tends to 

overestimate the fluctuations.  

Of particular interest are the thermal velocity and density fluctuations in the pure MD 

region, which corresponds to the region of the highest resolution of the GLL-FH model. Hence, 

Table 3 shows the standard deviations of effective particle density and particle velocity 

fluctuations computed in control volume corresponding to the pure MD zone (s=0), without 

considering the buffer region, where the local thermostat is used, i.e. time averaged 
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 . It can be seen that in all 

cases the fluctuations of the hybrid multiscale model are within 0.5% of the solutions of the 

reference all-atom equilibrium MD simulation of SPC/E water. 

Table 2a. Standard deviations of density fluctuations averaged in the complete particle 

domain domain. 

 

_ MDSTD   

(amu·nm-

3) 

_ FHSTD   

(amu·nm-

3) 

Cut-off  

(FH cells 9×9×9) 
6.834 5.768 

Reaction-field  

(FH cells 9×9×9) 
8.510 7.202 

Cut-off  

(FH cells 17×17×17) 
6.775 5.757 

Reaction-field  

(FH cells 17×17×17) 
8.517 7.206 

Analytical solution 10.049 
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Table 2b. Standard deviations of velocity fluctuations averaged in the complete particle 

domain. 

 
_ x_MDSTD u  

(nm·ps-1) 

_ y_MDSTD u  

(nm·ps-1) 

_ z_MDSTD u  

(nm·ps-1) 

_ x_FHSTD u  

(nm·ps-1) 

_ y_FHSTD u  

(nm·ps-1) 

_ z_FHSTD u  

(nm·ps-1) 

Cut-off  

(FH cells 9×9×9) 
0.0235 0.0231 0.0231 0.0254 0.0253 0.0253 

Reaction-field  

(FH cells 9×9×9) 
0.0186 0.0181 0.0181 0.0210 0.0210 0.0210 

Cut-off  

(FH cells 

17×17×17) 

0.02312 0.0229 0.02288 0.02515 0.02534 0.02532 

Reaction-field  

(FH cells 

17×17×17) 

0.0184 0.0181 0.0181 0.0206 0.0207 0.0207 

Analytical solution 0.0238 

Table 3a. Standard deviations of particle density fluctuations in the pure MD domain. 

 
_STD   

(amu·nm-3) 

Cut-off  

(FH cells 9×9×9) 
0.9721 

Reaction-field  

(FH cells 9×9×9) 
0.9722 

Cut-off  

(FH cells 17×17×17) 
0.9769 

Reaction-field  

(FH cells 17×17×17) 
0.9722 

Reference all-atom 

MD solution 
0.9721 

Table 3b. Standard deviations of particle velocity fluctuations in the pure MD domain. 

 
_ xSTD u  

(nm·ps-1) 

_ ySTD u  

(nm·ps-1) 

_ zSTD u  

(nm·ps-1) 

Cut-off  

(FH cells 9×9×9) 
0.9588 0.9572 0.9609 

Reaction-field  

(FH cells 9×9×9) 
0.9595 0.9601 0.9588 

Cut-off  

(FH cells 17×17×17) 
0.9572 0.9610 0.9584 

Reaction-field  

(FH cells 17×17×17) 
0.9587 0.9591 0.9599 

Reference all-atom 

MD solution 
0.9575 0.9578 0.9576 

Figure 4 shows the time history of volume-averaged density and temperature computed in 

the pure MD zone for the same four cases. Thanks to the local thermostat implemented in the 

GLL-FH model, the temperature in the pure MD zone is well controlled in all cases. No 
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influence of the hydrodynamic domain size on the predicted temperature and density signals 

can be noted.  

However, depending on the choice of the method for computing long-range interactions, 

the mean density calculation shows some variability: the Cut-off method overestimates the cell-

averaged water density by about 7.5-8.7% while the reaction-field overestimates by only about 

1%. As water is a highly incompressible substance, the 7-8 fold reduced error in density 

suggests that the Reaction-Field method leads to an improved preservation of the local reference 

pressure in comparison with the Cut-off method.  
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Figure 4. Dependence of the temperature (a) and density (b) in the pure MD region of the 

computational domain on the domain size and the electrostatics interaction method: Cut-off 

method in the 9×9×9 domain, Cut-off method in the 17×17×17 domain, Reaction-Field 

method in the 9×9×9 domain, and Reaction-Field method in the 17×17×17 domain. 

 

To complete this sub-section, distributions of the cell-averaged temperature of MD particles 

along the flow stream-wise, shear-wise, and span-wise directions, which are centred in the 

pure MD region, are shown in Fig.5. The solutions presented correspond to Reaction-Field 

method and the 9×9×9 cell computational domain. Other choices of the force field and 

computational domain sizes lead to very similar temperature distributions, hence, are not 

included. Fig. 5a shows the particle temperature measured computed from the equipartition 

theorem. The temperature profiles in all 3 coordinate directions virtually coincide, and the 

particle temperature in the central pure MD region is equal to the target value, T0. Fig.5b 

shows the reconstructed full temperature including the hydrodynamic phase contribution in 

accordance with Eq.(17). Good agreement with the target temperature T0 is evident for all 

spatial locations including the hydrodynamics-dominated regions near the boundaries of the 
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MD box. This confirms that the implemented local thermostat works well for the non-

equilibrium flow problem considered. 
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Figure 5. Profiles of the cell-averaged temperature of MD particles along the stream-

wise (x1), shear-wise (x2), and span-wise (x3) directions normalised on the target 

temperature T0 and computed from (a) the equipartion theorem and (b) the equipartion 

theorem including the hydrodynamic phase contribution in accordance with Eq.(17). 

The model corresponds to the Reaction-Field method in the 9×9×9 domain.  

 

3.3 Radial distribution function 

The radial distribution function (RDF) is an important indicator showing whether the 

interatomic forces in water have been accurately reproduced. Hence, RDF of water atoms has 

been computed in the pure MD region for all 4 GLL-FH models and compared with the 

reference all-atom equilibrium MD solution. The results for O-O atoms are shown in Figure 6. 

Again, no influence of the hydrodynamic domain size on the predicted RDF function can be 

noted. However, it can be observed that the solutions of the Cut-off model correctly capture the 

first hydration layer and yet smear the subsequent dip associated with repulsion, which is likely 

to be due to the water density overestimation. In comparison with this, the Reaction-Field 

models capture both the features of the RDF curve and are in excellent agreement with the 

reference all-atom MD solution. 
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Figure 6. Radial distribution functions of O-O atoms for different electrostatics methods Cut-

off method (a) and Reaction-field method(b): Cut-off method in the 9×9×9 domain, Cut-off 

method in the 17×17×17 domain, Reaction-field method in the 9×9×9 domain and Reaction-

field method in the 17×17×17 domain. The reference pure all-atom MD solution is included 

for comparison. 

3.4 Evaluation of computational efficiency  

Since hybrid atomistic-scale resolving multiscale methods are considerably more complex 

in comparison with the single-scale methods like Molecular Dynamics, computational 

efficiency of the suggested multiscale method is of great interest. All current GLL-FH models 

have been implemented in GROMACS and run on a workstation computer. The computational 

cost of the multiscale solution does not depend on the type of the long-range electrostatics 

method, cut-off and reaction-field and only weakly depends on the size of the hydrodynamics 

box computational domain. Since the main cost is associated with solving the MD particle 

equations in the small interior domain, the equivalent cost of equilibrium all-atom MD 

simulation in the entire computational domain is much greater. The difference in the 

computational cost of the hybrid multiscale method and the all-atom MD model in the same 

computational domains, 9×9×9 and 17×17×17 control volumes are summarised in Table 4. 

Notably, for the smaller computational domain, 9×9×9, the suggested multiscale model is a 

factor of 4 faster that the all-atom equilibrium MD simulation. For the larger size domain of 

17×17×17 volumes, the hybrid method already becomes a factor of 18 faster in comparison 

with the all-atom simulation. For large problems, the computational benefits of the hybrid 
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method in comparison with the pure MD method should increase proportionally to the size of 

the hydrodynamics box simulation domain.  

Table 4. Simulation times of the hybrid multiscale method against the all-atom equilibrium 

molecular dynamics for different computational domains, CPU hours for nanosecond 

simulated. 

Domain size (9×9×9) (17×17×17) 

CPU hours of the hybrid method 

/CPU hours of the all-atom MD 

simulation 

5.81/21.24=0.274 7.78/138.34=0.056 

4. Conclusions 

The thermostat-consistent fully coupled molecular dynamics – generalised fluctuating 

hydrodynamics model has been extended to non-equilibrium water flow simulations. The key 

ingredients of this extension are the increased robustness of the method due to the use of a more 

stable approximation of the source terms in the governing fluctuating hydrodynamics equations 

and the linearization formulation, which simplifies setting up of the boundary conditions. The 

strong coupling and improved numerical stability of the hybrid multiscale method allow using 

the advanced algorithms of modelling of long-range electrostatic interactions in water, such as 

the Reaction-Field and Particle-Mesh Ewald methods in GROMACS, both of which give 

similar results.  

For validation, the method is applied for a multi-resolution simulation of the periodic 

Poiseuille flow of SPC/E water. It is shown that the time-averaged flow velocity profile 

compares well with the analytical solution, the thermal density and velocity fluctuations are 

within the expected tolerance from the theoretical predictions of the grand canonical ensemble 

fluctuating hydrodynamics theory, and the fluctuations in the pure molecular dynamics region 

are within 0.5% from the reference all-atom molecular dynamics simulation. In addition, 

distributions of the cell-averaged temperature of MD particles along the flow stream-wise, 

shear-wise, and span-wise directions are shown to be in good agreement with the target 

temperature value in all spatial locations including those dominated by hydrodynamics. 
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It is shown that the solution based on the Reaction-Field method captures both the mean 

temperature and density in the atomistic region of the hybrid model within 1% from the 

specified conditions and captures well both the hydration layer peak and the subsequent deep 

of the RDF function.  

The computational efficiency of the non-equilibrium fully coupled molecular dynamics – 

generalised fluctuating hydrodynamics model is similar to the previously reported equilibrium 

version of the same model: it is a factor of 4 to 18 faster compared to the all-atom equilibrium 

molecular dynamics model depending on the overall domain size. The current implementation 

in the popular open-source code such as GROMACS makes the suggested model available to 

other researchers working in the area of atomistic scale resolving simulations of non-

equilibrium flows.  

Code availability 

The multiscale code with all parameter files and README can be downloaded following the 

GitHub link: https://github.com/ikorotkin/gromacs_fhmd-langevin_non-equilibrium 
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